Ammonia Triborane: A Promising New Candidate for Amineborane-Based Chemical Hydrogen Storage

Chang Won Yoon and Larry G. Sneddon*

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323

Received June 26, 2006; E-mail: lsneddon@sas.upenn.edu

Because of their high hydrogen densities, boron based compounds, including especially sodium borohydride (NaBH₄)¹ and ammonia borane (NH₃BH₃),² are now being intensely investigated as chemical hydrogen storage materials that can release hydrogen by hydrolytic processes (eqs 1–2).

NaBH₄(s) + 2H₂O(l) → Na⁺(aq) + BO₂⁻(aq) + 4H₂(g) (1)

NH₃BH₃(s) + 2H₂O(l) → NH₄⁺(aq) + BO₂⁻(aq) + 3H₂(g) (2)

The high hydrogen release capacity that could potentially be achieved by ammonia triborane, NH₃B₃H₇ (1), oxidative-hydrolysis (eq 3) should likewise make it an attractive candidate for chemical hydrogen storage. But, owing to the lack of a suitable method for its efficient synthesis, there have been no previous explorations of the chemical hydrogen storage properties of this compound. We report here both a convenient and safe method for the synthesis of ammonia triborane and our initial studies of its hydrolytic hydrogen-release properties that indicate it is a promising new material for chemical hydrogen storage applications.

Ammonia triborane was first synthesized by Kodama³ via the cleavage reaction of tetraborane, B₄H₁₀, with ethers to initially form LB₃H₇ (L = tetrahydrofuran or tetrahydropyran) adducts (plus B₂H₆) that, following displacement of the ethers by reaction with anhydrous ammonia, then produced NH₃B₃H₇. Unfortunately, tetraborane is a volatile unstable compound that is explosive in anhydrous ammonia, then produced NH₃B₃H₇. Unfortunately, tetraborane is a volatile unstable compound that is explosive in air, and, as a result, any large-scale synthesis based on its use is not feasible.

Binder⁴ previously reported that I₂ oxidation of Me₂N⁺B₁H₈⁻ in noncoordinating solvents (e.g., CH₂Cl₂) yielded the B₂H₆-dimer, B₂H₁₄. We have now found that iodine oxidation (with slow warming from −70 to 20 °C) of the air stable Bu₄N⁺B₃H₆⁻ salt in glyme (1,2-dimethoxyethane) (eq 4) allows the efficient preparation of solutions of the (glyme)B₃H₇ adduct. Direct treatment (eq 5) of these (glyme)B₃H₇ solutions with anhydrous ammonia then yields pure NH₃B₃H₇ as a colorless crystalline solid in >80% yields (based on Bu₄N⁺B₃H₆⁻). Since the Bu₄N⁺B₃H₆⁻ salt can itself be readily prepared by iodine oxidation of BH₄⁻, the large-scale, safe synthesis of NH₃B₃H₇ is now possible.

Bu₄N⁺B₃H₆⁻ + 0.5I₂ + glyme → (glyme)B₃H₇ + Bu₄NI + 0.5H₂ (4)

(glyme)B₃H₇ + NH₃ → NH₃B₃H₇ + glyme (5)

Figure 1. Acid-induced hydrogen release from ammonia triborane.

Figure 2. Metal-catalyzed hydrogen release from aqueous (~0.45 wt %) ammonia triborane solutions containing (●) RhCl₃ (6.9 mol %); (■) 5 wt %-Rh/Al₂O₃ (7.0 mol %-Rh); (◇) [Rh(COD)(Cl)]₂ (7.2 mol %); (▲) 5 wt %-Rh/Al₂O₃ (1.4 mol %-Rh); (◇) no catalyst.

1 is significantly more soluble in water than NH₃BH₃ (26 wt %), with NH₃B₃H₇ solutions of at least 33 wt % being attained. Also, unlike aqueous NaBH₄, which is stable only in strongly alkaline solutions,¹b,c aqueous NH₃B₃H₇ solutions are quite stable at pH 7.5 in air as evidenced by ¹H NMR studies that showed a 25 wt % solution remained unchanged over 4 days.

Efficient hydrogen release from aqueous solutions of 1 was obtained upon the addition of either acids or appropriate metal-catalysts. As shown in Figure 1, quantitative measurements of hydrogen release using a gas buret showed that when an excess of aqueous HCl (1 mL of 12.1 M HCl) was added to 12 mg (0.21 mmol) of 1, a near theoretical value of 7.85 equiv (1.65 mmol) of H₂ was evolved over ~1 h.

More rapid hydrogen release was achieved using metals to catalyze the hydrolysis reaction. Hydrogen release from NaBH₄ and NH₃BH₃ has previously been attained by metal-catalyzed hydrolysis, with Ru-catalysts¹ for NaBH₄ and Pt-catalysts² for NH₃BH₃ exhibiting the highest reactivities. We have now screened a variety of potential catalysts for ammonia triborane hydrolysis and found high activities for the rhodium based systems, Rh(0) supported on alumina. [Rh(COD)(μ-Cl)]₂ (COD = 1,5-cyclooctadiene), and RhCl₃ (Figure 2). With high catalyst loadings of RhCl₃, ~7 equiv of hydrogen were released in only 1.5 min at room temperature. Although they are unchanged upon initially dissolving in water,
both the [Rh(COD)(μ-Cl)]$_2$ and RhCl$_3$ appear to undergo reduction upon ammonia triborane addition suggesting that Rh clusters and/or colloids may be the active catalytic species in these systems.6

The rhodium catalysts have also been found to have extended lifetimes. Thus, as indicated in Figure 3, hydrogen evolution measurements following periodic additions of \sim9 mg (\sim0.16 mol) of solid ammonia triborane to a 2 mL aqueous borate-buffered (pH maintained between 7.2 and 8.0) solution containing 1.3 mg (0.012 mmol Rh) of 5 wt-% Rh/Al$_2$O$_3$ showed little change in the hydrogen release rates over 10 cycles.

An Arrhenius plot of the initial rate data (Figure 4) for hydrogen release from a 5 wt-% Rh/Al$_2$O$_3$ (1.1 mol-% Rh) catalyzed reaction of a 4.9 wt-% ammonia triborane solution at different temperatures yielded an activation energy of 13.4 kcal/mol, which is in the range found for metal-catalyzed NaBH$_4$ hydrolysis (\sim9 to 18 kcal/mol, depending on the catalyst1).

Calculations of the standard heats of eqs 1–3 using standard enthalpies of formation,7 indicate that hydrogen release from NH$_3$BH$_3$H$_2$ is slightly more exothermic (15.8 kcal/mol-H$_2$) than that from either NaBH$_4$ (14.9 kcal/mol-H$_2$) or NH$_3$BH$_3$ (12.7 kcal/mol-H$_2$), but is much less than the hydrolytic reactions of metal hydrides (e.g., LiAlH$_4$, \sim30 kcal/mol-H$_2$).8

As illustrated in Figure 5, the hydrogen release reaction of a 22.7 wt-% sample of aqueous ammonia triborane containing 0.30 g of H$_2$O, 0.10 g of NH$_3$BH$_3$H$_2$ (1.8 mmol), and 0.04 g of 5 wt-% Rh/Al$_2$O$_3$ (0.02 mmol of Rh) produced 0.027 g (13.5 mmol, 7.5 equiv) of H$_2$ (measured by gas buret) over 3 h at 21 °C. This result corresponds to a production of 6.1 wt-% H$_2$ based on materials [wt % = H$_2$-wt/(NH$_3$BH$_3$H$_2$ + H$_2$O + Rh/Al$_2$O$_3$-wts)] and suggests that the DOE 2007 total-system target9 of 4.5 wt-% for hydrogen release from a chemical hydrogen storage system might be attainable with this system. Under these concentrated conditions, 13B NMR studies show that the hydrolysis reaction yields condensed polyborates, which upon addition of water form mixtures of B(OH)$_3$/B(OH)$_4$.9 Thus, the real utility of this process as a chemical hydrogen storage system will ultimately depend on the development of new “off-board” methods to regenerate ammonia triborane from these borates.

Acknowledgment. We thank the U.S. Department of Energy Center of Excellence for Chemical Hydrogen Storage for support. We also thank Dr. Goji Kodama for his helpful comments.

Supporting Information Available: Experimental procedures for the synthesis of NH$_3$BH$_3$H$_2$ and the hydrogen release studies. This material is available free of charge via the Internet at http://pubs.acs.org.

References