Bis(carbene)pyridine Complexes of Cr(III): Exceptionally Active Catalysts for the Oligomerization of Ethylene

David S. McGuinness,† Vernon C. Gibson,*‡† Duncan F. Wass,‡ and Jonathan W. Steed§

Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK,
BP Chemicals, Centre 1, rue de Ransbeek 310, 1120 Brussels, Belgium, and Department of Chemistry,
King’s College London, Strand, London WC2R 2LS, UK

Received July 11, 2003; E-mail: v.gibson@imperial.ac.uk

One of the more active areas of chemical research over the past decade has been the discovery and development of new molecular catalysts for the oligomerization and polymerization of olefins (ethylene, α-olefins), particularly the search for “non-metallocene” polymerization catalysts, and for new catalysts for the production of linear α-olefins from ethylene. Olefins in the C6−C20 range are produced on a large global scale as comonomers for polyethylene, for surfactant production, and for synthetic lubricants, predominantly through the use of aluminum alkyls or Ni-based catalysts (SHOP). Heterogeneous polymerization catalysts based on Cr are well established in the form of the Phillips and Union Carbide systems (Cr/SiO2), and much interest in Cr-based polymerization catalysts has arisen from these technologies. In particular, the development of homogeneous models for these systems has been explored. Research in this area frequently involves the design of new ancillary ligands to support and activate the metal center toward polymerization. In this respect, over the past decade there has been much interest in the application of heterocyclic carbene ligands over a broad range of catalytic reactions. For example, Pd-based catalysts for C−C coupling reactions,7 and highly active catalysts for ring-opening metathesis polymerization based on Ru-carbene complexes,8 have been developed. Interestingly, however, the use of these ligands in conventional olefin oligomerization and polymerization catalysts has yet to be exploited, and their application in these reactions has been very limited. Although half-sandwich chromium carbene adducts have been evaluated for ethylene polymerization,9 and imine-functionalized carbene complexes of several transition metals have been disclosed in the patent literature,10 their activities have proved disappointingly low. Simple carbene adducts of the group 4 metals were found to give low to moderate activity for the polymerization of ethylene, while carbene complexes of Ni(II) were found to be very active for α-olefin dimerization, but only when stabilized by an ionic liquid solvent, which limits decomposition of the complexes via reductive elimination of alkyl-imidazolium cations.12

Very recently, CNC-pincer ligands of the form 2,6-(1-alkylimidazol-2-ylidene)pyridine have been prepared and complexed to late transition metals, and these complexes have been applied to a number of catalytic reactions.13 To date, these tridentate ligands have not been complexed to early transition metals, nor have complexes of them been evaluated for olefin polymerization. It is notable that this ligand bares structural similarities to the bis(imino)pyridine ligands that have been employed to stabilize highly active oligomerization/polymerization catalysts based on Fe and Co.2b,c This, along with the lack of representation of heterocyclic carbene ligands in olefin oligomerization/polymerization systems, prompted us to evaluate complexes of CNC-pincer carbene ligands as catalysts for this reaction. Herein, we report new Cr(III) complexes of these ligands which, in combination with MAO, give exceptionally active catalysts for ethylene oligomerization.

The green Cr(III) complexes 1−3, with differing degrees of steric hindrance on the carbene donor, were prepared in good (>80%) yield via the reaction of the corresponding bis(carbene)pyridine with CrCl3(THF)3 in tetrahydrofuran at room temperature (Scheme 1). Crystals of complex 1 suitable for an X-ray diffraction study were grown by diffusion of dichloromethane into a DMSO solution of the complex. The molecular structure of 1,15 which shows a slightly distorted octahedral geometry, along with selected bond distances and angles is shown in Figure 1. To our knowledge, this represents the first structural characterization of a Cr(III) heterocyclic carbene complex. The Cr−C distances [2.087(6), 2.120(6) Å] are similar to those in Cr(II) carbene complexes [2.123(13), 2.127(5) Å],16 while the chelate bite angles of the CNC ligand [76.3(2)°, 75.68(9)°] are similar to those in bis(imino)pyridine Cr(III) complexes (77−78°).17

The results of ethylene oligomerization tests using 1−3, along with MAO cocatalyst, are collected in Table 1. Other cocatalysts, such as diethylaluminum chloride and triisobutyl aluminum/trityl-B(C6F5)3, were also tested and found to be inferior to MAO. In the

Figure 1. Molecular structure of 1. Selected bond distances (Å) and angles (deg): Cr(1)−C(4) 2.120(6), Cr(1)−C(14) 2.087(6), Cr(1)−N(3) 2.049(4), N(3)−Cr(1)−C(14) 76.3(2), N(3)−Cr(1)−C(4) 75.68(9), C(14)−Cr(1)−C(4) 154.9(2).

Scheme 1

[Diagram]

R = i-Pr (1)
2,6-i-Pr2C6H3 (2)
1-adamantyl (3)
and the potential for them to act as ancillary ligands for early transition metal olefin polymerization seems promising.

Acknowledgement. The Ramsay Memorial Fellowship Trust and BP are gratefully acknowledged for financial support in the form of a Ramsay Fellowship to D.S.M.

Supporting Information Available: Crystallographic data, in CIF format, for structure 1. Procedure for ethylene oligomerization, preparation of 1–3, and crystallographic data for 1 (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(10) Tilset, M.; Andell, O.; Dhindsa, A.; Froseth, M. W. 0249758, 2002 (Borealis).
(14) I. C2H3N(Ci)3Cl(O)(Cl). (Found) C 70.00, H 7.79, N 10.84. (B) C5H3N(Ci)3Cl(O)(Cl). (Found) C 52.34, H 7.57, N 13.36. (C) C2H3N(Ci)3Cl(O) (Found) C 58.93, H 7.79, N 13.54.
(15) Crystal data for I. C2H3N(Ci)3Cl(O) (Found) C 58.36, H 7.48, N 13.16. (B) C5H3N(Ci)3Cl(O) (Found) C 58.36, H 7.48, N 13.16.
(18) I. C2H3N(Ci)3Cl(O)(Cl). (Found) C 60.92, H 4.79, N 15.43. (B) C5H3N(Ci)3Cl(O)(Cl). (Found) C 60.92, H 4.79, N 15.43. (C) C2H3N(Ci)3Cl(O) (Found) C 60.92, H 4.79, N 15.43.

"Table 1. Ethylene Oligomerization Results Using 1–3"

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>P_{ethylene} (bar)</th>
<th>T_{run} °C</th>
<th>activity (\frac{g(\text{product})}{\text{mmol(Cr)}})</th>
<th>prod. %</th>
<th>K</th>
<th>α-Oi %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>44</td>
<td>727</td>
<td>1817</td>
<td>0.48</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>33</td>
<td>1394</td>
<td>697</td>
<td>0.46</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td>70</td>
<td>2263</td>
<td>5657</td>
<td>0.78</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2.5</td>
<td>60</td>
<td>2623</td>
<td>3279</td>
<td>0.78</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>46</td>
<td>5490</td>
<td>2745</td>
<td>0.78</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>25</td>
<td>12 065</td>
<td>6032</td>
<td>0.75</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>5</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>3</td>
<td>23</td>
<td>73</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2</td>
<td>25</td>
<td>27 100</td>
<td>13 550</td>
<td>0.78</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>1</td>
<td>25</td>
<td>40 440</td>
<td>20 220</td>
<td>0.80</td>
<td>86</td>
</tr>
</tbody>
</table>

\(^{a} \) [Cr] = 20 \mu M, toluene, 500 MAO, 30 min. \(^{b} \) Temperature reached due to exotherm. \(^{c} \) g(product)/mmol(Cr) \(^{-1} \) bar \(^{-1} \) h \(^{-1} \). \(^{d} \) Overall productivity g(product)/mmol(Cr). \(^{e} \) Temperature held constant throughout run. \(^{f} \) 10 \mu M [Cr], 1000 MAO, 1000 Al(Bu)\(_3\) scavenger. \(^{g} \) 4.5 \mu M [Cr], 1000 MAO, 3000 Al(Bu)\(_3\) scavenger.